logo

Cơ sở viễn thông_ Chương 2


Cơ sở viễn thông Phạm Văn Tấn Chương II PHÂN TÍCH TÍN HIỆU XEM LẠI CHUỖI FOURRIER. PHỔ VẠCH. BIẾN ĐỔI FOURRIER. CÁC HÀM KỲ DỊ: ( SINGNLARITY FUNCTIONS ). PHÉP CHỒNG (CONVOLUTION). PHÉP CHỒNG ĐỒ HÌNH ( GRAPHICAL CONVOLUTION ). ĐỊNH LÝ PARSEVAL. NHỮNG TÍNH CHẤT CỦA BIẾN ĐỔI FOURRIER. ĐỊNH LÝ VỀ SỰ BIẾN ĐIỆU. CÁC HÀM TUẦN HOÀN. Trang II.1 Cơ sở viễn thông Phạm Văn Tấn XEM LẠI CHUỖI FOURRIER. 1. Một hàm bất kỳ S(t) có thể được viết: ( dạng lượng giác ). ∞ S(t) = a0cos(0) + ∑ [ an cos 2π nf0t + bn sin 2πf0t ] (2.1) n= 1 1 Với t0 < t < t0 + T ; T fo Số hạng thứ nhất là a0 vì cos (0) = 1. Việc chọn các hằng an và bn theo các công thức sau: t o +T ∫ s(t)dt 1 - Với n = 0 ; a0 = (2.2) T to 2 to +T - Với n ≠ 0 ; an = T to∫ s( t ) cos 2πnf o t.dt (2.3) 2 to +T bn = T to∫ s( t ) sin 2πnf ot.dt (2.4) Hệ thức (2.2) có được bằng cách lấy tích phân 2 vế của (2.1). Hệ thức (2.3) và (2.4) có được bằng cách nhân cả 2 vế của (2.1) cho hàm sin và lấy tích phân. 2. Dùng công thức EULER, có thể đưa dạng s(t) ở trên về dạng gọn hơn ( dạng hàm mũ phức ). EULER → ej2πnfot = cos 2πnfot + j sin 2πnfot (2.5) ∞ S(t) = ∑ Cn e j2πnfot (2.6) n =−∞ Tròn đó n: Số nguyên; dương hoặc âm. Và Cn được định bởi: 1 to +T Cn = ∫ T to s(t) e -j2πnfot dt (2.7) Điều này dễ kiểm chứng, bằng cách nhân hai vế của (2.5) cho e -j2πnfot và lấy tích phân hai vế. Kết quả căn bản mà ta nhận được = một hàm bất kỳ theo thời gian có thể được diễn tả bằng tổng các hàm sin và cos hoặc là tổng của các hàm mũ phức trong một khoảng. Nếu s(t) là một hàm tuần hoàn, ta chỉ cần viết chuỗi Fourrier trong một chu kỳ, chuỗi sẽ tương đương với s(t) trong mọi thời điểm. Ví dụ 1: Hãy xác định chuỗi Fourrier lượng giác của s(t) như hình vẽ. Chuỗi này cần áp dụng trong khoảng - π/2 < 1< π/2 . Trang II.2 Cơ sở viễn thông Phạm Văn Tấn Ta dùng chuỗi Fourrier lượng giác, với T = π và fo 1 1 s(t) = = như vậy chuỗi có dạng: T π ∞ s(t) = a0 + ∑ [ an cos 2nt + bn sin 2nt ] t n=1 -2 -π/2 π/2 2 Hình 2.1 Tín hiệu cos(t). π + ∫ 1 2 Trong đó: a0 = π 2 cos t. dt = π − π 2 π + 2 ⎡ ( −1) n +1 ( −1) n ⎤ ∫ 2 và an = π 2 cost .cos 2nt .dt = ⎢ + ⎥ π − π ⎣ 2n − 1 2n + 1⎦ ⎢ ⎥ 2 Ta định giá bn như sau: π + ∫ 2 2 bn = π s( t ).sin 2nt .dt T − 2 Vì s(t) là một hàm chẵn theo thời gian, nên s(t) .sin 2nt là một hàm lẻ và tích phân từ - π/2 đến π/2 là zero. Vậy bn = 0 với mọi s(t) lẻ. Chuỗi Fourrier được viết : ∞ 2 ⎡ ( −1) n +1 ( −1) ⎤ n ∑ 2 s(t) = + ⎢ + ⎥ cos 2nt (2.8) π π ⎢ 2n − 1 2n + 1⎥ n =1 ⎣ ⎦ Lưu ý: Chuỗi Fourrier cho bởi phương trình trên đây có cùng khai triển như của hàm tuần hoàn sp(t) như hình dưới đây: sp(t) t -3π/2 -π/2 π/2 3π/2 Hình 2.2 Anh của s (t) trong biến đổi Fourier. PhỔ vẠch Trong lúc tìm sự biểu diễn chuỗi Fourrier phức của 1 hàm theo thời gian, ta dùng một thừa số trọng lượng phức Cn cho mỗi trị của n. Thừa số Cn có thể được vẽ như là hàm của n. Vậy cần đến 2 đường biểu diễn. Một để biểu diễn cho suất của n và một để biểu diễn pha. Đường biểu diễn này thì rời rạc. Nó chỉ khác zero đối với những trị gián đoạn của trục hòanh. ( Ví dụ: C1/2 thì không có ý nghĩa ). Đường biểu diễn Cn đối với nf0 gọi là phổ Fourrier phức. Trong đó nf0 là lượng tương ứng với tần số của hàm mũ phức mà đối với nó Cn là một hệ số trọng lượng. Ví dụ 2: Tìm phổ Fourrier phức của sóng cosin được chỉnh lưu toàn sóng, s(t) = ⏐cos t⏐, như hình vẽ dưới đây. Trang II.3 Cơ sở viễn thông Phạm Văn Tấn |cost| t -3π/2 -π/2 π/2 3π/2 Hình 2.3 Tín hiệu |cos(t)|. Trước hết ta phải tìm khai triển chuỗi Fourrier theo dạng hàm mũ phức. 1 Với F0 = , ta tính trị giá Cn từ (2.6) và tìm chuỗi Fourrier trực tiếp. π Tuy nhiên ở ví dụ 1, ta đã khai triển chuỗi Fourrier dưới dạng lượng giác rồi, nên có thể khai triển hàm cos để đưa về dạng hàm mũ phức bằng cách dùng công thức Euler: ∞ 2 ⎡ ( −1) n +1 ( −1) ⎤ n ∑ 2 s(t) = + ⎢ + ⎥ cos 2nt π π ⎢ 2n − 1 2n + 1⎥ n =1 ⎣ ⎦ Với cos 2nt = 2 [ 1 j 2nt e + e− j 2nt ] Vậy chuỗi Fourrier dạng hàm mũ: ∞ −1 ∑ ∑ 2 an j 2nt an − j 2nt s(t) = + e + e π 2 2 n =1 n = −∞ ∞ ∞ ∑ ∑ 2 an j 2nt a− n j 2nt = + e + e (2.9) π 2 2 n =1 n =1 Ta đã đổi biến số ở số hạng sau. Vậy Cn liên hệ với an: an Cn = Với n > 0 2 a− n Cn = Với n < 0 2 2 Cn = π Trong trường hợp này, Cn là số thực. Nên chỉ cần vẽ một đồ hình. Trang II.4 Cơ sở viễn thông Phạm Văn Tấn 2/π 2/3π -2 2 2/35π nf0 -3 -1 1 3 3 -2/15π Hình 2.4: Phổ vạch của ví dụ 2 . BiẾn đỔi Fourrier: Một tín hiệu không tuần hoàn được xem như là trường hợp giới hạn của một tín hiệu tuần hoàn, trong đó chu kỳ T của tín hiệu tiến đến ∞. Nếu chu kỳ tiến đến ∞, tần số căn bản F0 tiến đến 0. Các họa tần khép lại với nhau và, trong giới hạn, tổng chuỗi Fourrier biểu diễn cho s(t) sẽ trở thành một tích phân. ∞ F [s(t)] = S(f) ∫ s(t)e −∞ − j 2πft dt (2.10) F [.] kí hiệu cho biến đổi Fourrier của [.]. Nó còn được gọi là phổ - hai - phía ( Two - Side - Spectrum ) của s(t), vì cả hai thành phần tần số dương và âm đều thu được từ (2.10). Giả sử s(t) là một hàm thực (vật lý). Một cách tổng quát, S(f) là một hàm phức theo tần số. S(f) có thể phân làm hai hàm thực X(f) và Y(f) : S(f) = X(f) + jY(f) (2.11) Dạng trên gọi là dạng Cartesian, vì S(f) có thể được biểu diễn trong một hệ trục tọa độ Descartes. Cũng có thể biểu diễn S(f) trong một hệ trục cực. Khi đó, cặp hàm thực sẽ trình bày suất và pha. S(f) = ⏐S(f) ⏐ ejθ(f) (2.12) Với : ⏐S(f)⏐ = X 2 (f ) + Y 2 (f ) (2.13) và: ⎛ Y (f ) ⎞ θ(f) = tan-1 ⎜ ⎟ (2.14) ⎝ X (f ) ⎠ Dạng trên đây còn gọi là dạng cực ( Polar form ). Trang II.5 Cơ sở viễn thông Phạm Văn Tấn Để xác định những tần số nào hiện hữu, ta khảo sát phổ của xuất ⏐S(f)⏐. ( Đôi khi gọi tắt là ” Phổ “ ). Phổ của một dạng sóng ( dòng hay thế ) có thể thu được từ những phép tính toán học. Nó không xuất hiện một cách vật lý trong các mạch điện thực tế. Tuy nhiên có thể dùng Spectrum Analyser để quan sát một cách gần đúng. * Để phục hồi lại s(t) từ biến đổi Fourrier của nó, ta tính tích phân sau: ∞ ∫ (2.15) s(t) = S( f ) ej 2πft dt = F -1 [S(f)] −∞ Phương trình này thường gọi là biến đổi ngược của S(f). Hai hàm s(t) và S(f) tạo thành một cặp biến đổi Fourrier. Trong đó, s(t) diễn tả trong phạm vi thời gian, còn S(f) diễn tả trong phạm vi tần số. Ký hiệu cho một cặp biến đổi Fourrier : S(f) ↔ s(t) Hoặc s(t) ↔ S(f) (2.16) Nếu tín hiệu hoặc nhiễu được mô tả trong phạm vi này, thì sự mô tả tương ứng trong phạm vi kia sẽ được biết nhờ cách dùng (2.10) hoặc (2.15). Dạng sóng s(t) có thể biến đổi Fourrier được nếu nó thỏa các điều kiện Dirichelet. Tuy nhiên, tất cả các dạng sóng vật lý trong kỷ thuật đều thỏa các điều kiện đó. Ví dụ 3: Phổ của một xung expo. Đặt s(t) là một xung expo tắt ( Decaying Exponential Pulse ) bị ngắt ( Switched ) tại t = 0. ⎧e− t ⎪ , t>0 s(t) = ⎨ (2.16) ⎪0 ⎩ , t Cơ sở viễn thông Phạm Văn Tấn 1 ⏐S(f) ⏐ = ; θ(f) = tan-1(2πf) 1 + ( 2πf ) 2 Cặp Fourrier trong ví dụ trên: ⎧e− t ⎪ , t > 0⎫ ⎪ 1 ⎨ ⎬ ↔ (2.18) ⎪0 ⎩ , t < 0⎪ ⎭ 1 + j 2πf Các hàm kỲ dỊ: ( Singnlarity Functions ). Ta phải đưa vào một loại hàm mới trước khi nói đến những ứng dụng của lý thuyết Fourrier. Loại hàm này nổi lên bất cứ lúc nào ta phân giải các loại hàm tuần hoàn. Đó là một phần của nhóm các hàm kỳ dị. Chúng có thể những chuyển hóa của hàm nấc đơn vị. 1. Ví dụ 4. Biến đổi Fourrier của hàm cổng ( Gating Function ): Tìm biến đổi của s(t), trong đó: ⎧A ⎪ , t >α s(t) = ⎨ (2.19) ⎪0 ⎩ , Phá ö khaï n c s(t) A t -α α Hình 2.5 Tín hiệu s(t). * Từ định nghĩa của biến đổi Fourrier. ∞ S(f) = ∫ s(t)e −∞ − j 2πft dt α ej 2πft α = ∫ A .e −α − j 2πft dt = −A j 2πf −α ej 2πf α − e− j 2πf α = A (2.20) j 2πf sin 2πf α =A πf Trang II.7 Cơ sở viễn thông Phạm Văn Tấn s(f) 2α 1/2α 1/α f Hình 2.6 Anh của s(t) trong biến đổi Fourier. Những hàm thuộc loại trên đây rất phổ biến trong kỷ thuật thông tin. Để tránh lập lại hàm này ta định nghĩa hàm Sa(x) như sau: sin x Sa(x) (2.21) x Khi đó (2.20) được viết lại: S(f) = 2Aα . Sa( 2πfα ) (2.22) 2. Hàm xung lực ( Impulse ). Bây giờ ta muốn tìm biến đổi Fourrier của 1 hằng, s(t) = A, với mọi t. Ta có thể xem nó là giới hạn của xung g(t) khi α → ∞. Ta cố gắng theo cách quanh co này, vì kỷ thuật trực tiếp thất bại trong trường hợp này. Khi áp s(t) = A vào tích phân định nghĩa, ta có: ∞ S(f) = ∫ −∞ Ae− j 2πft dt (2.23) Tích phân này không hội tụ. Từ (2.6), ta thấy khi α → ∞ , biến đổi Fourrier tiến đến vô cực tại gốc và những điểm cắt trục zero trở nên cách nhau vô cùng lớn. Như vậy, trong giới hạn, chiều cao của biến đổi Fourrier tiến đến vô cực, còn bề rộng thì đến zero. Điều này nghe buồn cười ! Nhưng nó không phải là một hàm thực sự với mọi lúc vì nó không được xác định tại f = 0. Nếu ta có nói bất cứ điều gì về biến đổi Fourrier của một hằng, ta phải thay đổi cách nghĩ. Sự thay đổi đó bắt đầu bằng cách định nghĩa một “ hàm “ mới đặt tên là xung lực ( mà nó không phải là một hàm thực sự tại mọi lúc ). Ký hiệu là δ(t). Định nghĩa của xung lực được tạo bởi 3 quan sát đơn giản. Hai trong số đó đã nói đến rồi, đó là: δ ( t) = 0 , t≠ 0 (2.24) δ ( t) → ∞ , t=0 Tính chất thứ 3 là diện tích tổng dưới dạng xung lực là đơn vị: Trang II.8 Cơ sở viễn thông Phạm Văn Tấn ∞ ∫ δ(t) dt = 1 −∞ (2.25) Vì tất cả diện tích của δ(t) tập trung tại một điểm, những giới hạn trên tích phân có thể chuyển về gốc mà không làm thay đổi giá trị của tích phân. Vậy: b ∫ δ(t) dt = 1 a a < 0 ; b> 0 (2.26) Ta có thể thấy rằng tích phân của δ(t) là u(t), hàm nấc đơn vị: t ⎧1 , t >0 −∞ ∫ δ( τ) dτ = ⎨ ⎩0 , t Cơ sở viễn thông Phạm Văn Tấn Ví dụ 5: Tính các tích phân sau: ∞ a) ∫ δ(t)[ t + 1] dt −∞ 2 2 b) ∫ δ(t − 1)[ t + 1] dt −1 2 5 c) ∫ δ(t − 1)[ t 3 3 + 4t + 2 dt ] ∞ d) ∫ δ(1− t)[ t + 2] dt −∞ 4 Giải: a) Áp dụng trực tiếp đặc tính mẫu: ∞ ∫ [ −∞ ] δ( t ) t 2 + 1 = s(0) = 02 + 1 = 1 b) Vì xung lực rơi vào khoảng của tích phân: Từ phương trình (2.30) 2 ∫ [ ] δ( t − 1) t 2 + 1 dt = s(1) = 12 + 1 = 2 −1 c) Xung lực xảy ra ở t = 1, nằm ngoài khoảng của tích phân. Vậy: 5 ∫ [ δ( t − 1) t 3 + 4t + 2 dt = 0 ] 3 d) δ( 1 - t ) rơi tại t = 1 vì đó là giá trị của t làm cho suất bằng zero. Vậy: ∞ ∫ δ(1− t)[ t + 2] dt = 1 −∞ 4 4 +2 =3 * Bây giờ ta tìm biến đổi Fourrier của một xung lực: ∞ δ(t) ↔ ∫ δ( t)e −∞ − j 2πft dt = e0 = 1 (2.31) * Ta trở lại tính biến đổi của 1 hằng, s(t) = A. Ta dễ thấy là tích phân xác định không hội tụ. ∞ A↔ −∞ ∫Ae − j 2πft dt (2.32) Trang II.10 Cơ sở viễn thông Phạm Văn Tấn A Với f ≠ 0, tích phân này bị giới hạn bởi . πf Với f = 0 tích phân sẽ ? * Vì tích phân định nghĩa biến đổi Fourrier và tích phân để tính biến đổi ngược thì tương tự, nên ta có thể phỏng đoán rằng biến đổi của một hằng là 1 xung lực. Đó là vì, một xung lực biến đổi thành một hằng, vậy một hằng sẽ biến đổi thành một xung lực. Ta hãy tìm biến đổi ngược của một xung. ∞ δ(f) ↔ ∫ δ (f )e −∞ j 2πft df = 1 (2.33) Như vậy, điều phỏng đoán của ta là đúng! Biến đổi ngược của δ(f) là một hằng, vậy ta có: A ↔ Aδ(f) (2.34) * Nếu ta biến đổi ngược 1 xung lực bị dời, ta khai triển cặp biến đổi sau: Aej2πfot ↔ Aδ ( f - f0 ) (2.35) Ví dụ 6: Tìm biến đổi Fourrier của s(t) = cos2πf0t Giải: Dùng công thức Euler, để khai triển hàm cosin: 1 j2πfot 1 Cos2πf0t = e + e - j2πfot 2 2 Biến đổi Fourrier của s(t) là tổng các biến đổi của 2 hàm expo. Từ (2.34) 1 1 Cos2πf0t ↔ δ (f − f 0 ) + δ (f + f 0 ) 2 2 (2.36) Trang II.11 Cơ sở viễn thông Phạm Văn Tấn Biến đổi này được vẽ: s(f) 1/2 1/2 f -f0 f0 Hình 2.8 Biến đổi Fourier của cos2πf0t. 3. Hàm nấc đơn vị ( Unit step function ). Một cặp biến đổi khác mà ta sẽ nói đến, là hàm nấc đơn vị. Ở đây, một lần nữa, ta lại gắn hàm vào định nghĩa của phép biến đổi, tích phân không hội tụ. Ta lại dùng đến kỷ thuật phỏng đoán. Và do sự không liên tục của hàm nấc, kỷ thuật này trở nên có nhiều hy vọng. Phép biến đổi thì tương đối dễ tính khi ta thực hiện như sau: 1 + Sgn( t ) u(t) = (2.37) 2 Trong đó, hàm Sgn được định nghĩa bởi: ⎧ +1 , t >0 Sgn (t) ⎨ (2.38) ⎩−1 , t Cơ sở viễn thông Phạm Văn Tấn 1 e-at t at -e -1 Hình 2.10 Hàm sgn(t). Ta có: F [ Sgn(t) ] = lim F [ e-a⏐t⏐ Sgn(t) ] (3.39) a→0 ⎡ 1 1 ⎤ 1 = lim ⎢ j2πf + a + j2πf − a⎥ = j πf a→0 ⎣ ⎦ Biến đổi của hàm nấc đơn vị được cho bởi phương trình (2.40) 1 1 u(t) ↔ + δ (f ) j2πf 2 (2.40) Phép chỒng (CONVOLUTION) Phép chồng 2 hàm r(t) và s(t) được định nghĩa bởi thuật toán tích phân: ∞ ∞ r(t) * s(t) = −∞ ∫ r(τ)s(t − τ) dτ = ∫ s(τ)r(t − τ) dτ −∞ (2.41) Ký hiệu * thì được qui ước và đọc “ r(t) chồng với s(t) “. Tích phân thứ hai là kết quả từ sự đổi biến số và chứng tỏ rằng phép chồng có tính giao hoán vậy: r(t) * s(t) = s(t) * r(t). Nhớ là phép chồng 2 hàm của t là một hàm của t. τ là một biến số giả do tích phân mà ra. Một cách tổng quát, tích phân của phương trình (2.41) thì rất khó tính. Ví dụ 7: Tính phép chồng của r(t) với s(t). Trong đó, r(t) và s(t) là những xung vuông được vẽ như hình. r(t) s(t) 1 1 t t -1 1 -2 2 Hình 2.11 Dạng tín hiệu r(t) và s(t). Giải: Các hàm có thể viết dưới dạng: r(t) = u ( t + 1) - u ( t - 1) Trang II.13 Cơ sở viễn thông Phạm Văn Tấn s(t) = u ( t + 2) - u ( t - 2) Trong đó, u(t) là hàm nấc định nghĩa bởi: ⎧1 , t>0 u(t) = ⎨ ⎩0 , tt+2 và u(t - τ - 2) = 0 ,τ>t-2 Ta có: ∞ t+2 ∫ u(t − τ + 2) dτ = ∫ dτ = −1 −1 t+3 ( Vì rằng t + 2 > -1 hoặc t > -3. Ở khoảng khác, tích phân là zero). - Nếu t - 2 > -1 hoặc t > 1, Trang II.14 Cơ sở viễn thông Phạm Văn Tấn ∞ t−2 ∫ u(t − τ − 2) dτ = ∫ dτ = −1 −1 t −1 - Nếu t + 2 > +1 hoặc t > -1, ∞ t+2 ∫ u(t − τ + 2) dτ = ∫ dτ = 1 1 t +1 - Nếu t - 2 > 1 hoặc t > 3, ∞ t−2 ∫ u(t − τ − 2) dτ = ∫ dτ = 1 1 t−3 Dùng 4 kết quả đó ta có: r(t) * s(t) = ( t + 3)u(t + 3) - (t - 1)u(t - 1) - (t + 1)u(t + 1) + (t - 3)u(t - 3) Bốn số hạng này và tổng của chúng được vẽ như hình dưới đây. Từ ví dụ khiêm tốn này, ta có thể thấy rằng nếu r(t) hoặc s(t) chứa hàm nấc, thì cách tính phép chồng trở nên rất lúng túng. Hình 2.12 Phép chồng của tín hiệu r(t) và tín hiệu s(t). (t+3)U(t+3) (t-3)U(t-3) 3 t t -3 3 -(t+1)U(t+1) -(t-1)U(t-1) -1 1 t t -1 r(t)*s(t) 2 t -4 -3 -2 -1 1 2 3 4 Phép chỒng đỒ hình ( Graphical convolution ) Nếu r(t) và s(t) quá phức tạp, hoặc dạng sóng không được biết chính xác, ta có thể dùng phép chồng đồ hình. Phương pháp này dùng những quan sát và kiểm tra tổng quát mà không phải tính chi tiết các tích phân. Trong nhiều áp dụng thông tin, phương pháp này thì đủ mà không cần thiết phải tính một phép chồng chính xác. Ví dụ 8: Dùng phép chồng đồ hình cho 2 hàm ở ví dụ 7. Trang II.15 Cơ sở viễn thông Phạm Văn Tấn Hình 2.13 Phép chồng đồ hình cho hai hàm ở ví dụ 7. t 1 r(t) s(t-τ) 1 r(τ)s(t-τ) 1 Diện tích -1 1 -6 -2 -4 0 1 1 1 0 -3 -1 1 -5 -1 1 1 1 1 1 −2 -1 1 2 2 -4.5 -.5 -1 -.5 1 1 1 1 2 -1 1 -4 -1 1 1 −1 1 1 1 1 2 2 -1 1 -3.5 .5 -1 .5 -1 1 1 1 2 -1 1 -3 1 -1 1 1 1 1 1 2 − 2 -1 1 -2.5 1.5 -1 1 0 2 1 1 1 -1 1 -2 2 -1 1 1 2 2 1 1 1 1 -1 1 -1.5 2.5 -1 1 2 1 1 1 3 1 -1 1 -1 3 -1 1 1 2 2 1 1 1 3 -1 1 -.5 3.5 -.5 1 0 1 1 1 -1 1 1 5 Ảnh qua gương của s(τ) là s( - τ). Đó là s(τ) được phản xạ qua trục đứng. Với một t cho sẵn, ta lập s(t - τ), biểu diễn cho hàm s( - τ) bị dời về phía phải bởi t. Sau đó, ta lấy tích số: r(t) s(t)( t - τ ) Và lấy tích phân của tích số này ( chính là tìm diện tích ) để có được trị giá của phép chồng ứng với trị giá của t. Trang II.16 Cơ sở viễn thông Phạm Văn Tấn Hình trên đây trình bày 12 khung của sự dời hình. Với ví dụ đặc biệt này, không bắt buộc s(t) phải phản xạ để có ảnh qua gương, vì s(t) là một hàm chẳn. Nhớ là diện tích của tích số biểu diễn cho trị giá của phép chồng. Diện tích này được vẽ thành một chuỗi các điểm. Có thể thấy là kết quả giống như ở ví dụ 7. Đường nối các điểm là đường thẳng. Điều đó hiển nhiên, vì phép chồng trở thành tích phân của một hằng. Kết quả cho một hàm dốc ( Ramp Function ). r(t)*s(t) 2 t -3 -2 -1 1 2 3 Hình 2.14 Kết quả phép chồng đồ hình của s(t) và r(t). Ví dụ 9: Tính phép chồng ( bằng đồ hình ) của 2 hàm sau đây: (Sinh viên tự giải) r(t) s(t) 1 1 t t -1 1 1 3 Hình 2.15 Tín hiệu s(t) và r(t) . Bây giờ ta xem phép chồng của một hàm bất kỳ với xung lực δ(t). ∞ δ(T) * s(t) = ∫ δ(t)s(t − τ) dτ = s(t − 0) = s(t) −∞ (2.42) Như vậy một hàm bất kỳ chồng với một xung lực thì giữ nguyên không thay đổi. Trang II.17 Cơ sở viễn thông Phạm Văn Tấn Hình 2.16 Kết quả phép chồng đồ hình của s(t) và r(t) Nếu ta chồng s(t) với xung lực bị dời ( Shifted ) δ(t - t0), ta thấy: ∞ δ(t - t0) * s(t) = ∫ δ(t − t )s(t − τ) dτ = s(t − 0) = s(t − t ) −∞ 0 0 (2.43) Tóm lại, phép chồng s(t) với một xung lực không làm thay đổi dạng hàm của s(t). Có thể chỉ gây nên một sự dời thời gian trong s(t) nếu xung lực không xảy ra tại t = 0. Giờ ta đã có khái niệm về thuật toán gọi là “ phép chồng “. Ta hãy trở lại phép biến đổi Fourrier. Định lý về phép chồng: Nếu r(t) ↔ R(f) Và s(t) ↔ S(f) Thì: r(t) * s(t) ↔ R(f). S(f) (2.44) Có thể chứng minh trực tiếp định lý bằng cách tính biến đổi Fourrier của phép chồng. Ta cũng có thể chứng minh: Trang II.18 Cơ sở viễn thông Phạm Văn Tấn R(f) * S(f) ↔ r(t) . s(t) (2.45) Bằng cách tính biến đổi Fourrier ngược. Ví dụ 9: Dùng định lý phép chồng để tính tích phân sau: ∞ sin 3τ sin( t − τ) ∫ −∞ τ t−τ dτ Giải: Tích phân trên biểu diễn phép chồng của 2 hàm theo thời gian: 3t sin t sin * 2 t ⎡ sin 3t ⎤ F ⎢ ⎡ sin t ⎤ ⎣ t ⎥ ⎦ F ⎢ ⎣ t ⎥ ⎦ π π t x t -3/2π 3/2π -1/2π 1/2π π2 = t -1/2π 1/2π Biến đổi Fourrier của tích phân là tích của biến đổi Fourrier của 2 hàm. Hai biến đổi này có thể xem ở bảng phụ lục. Hình 2.17 Tích của hai biến đổi Fourier từ s(t) và r(t). Lấy biến đổi Fourrier ngược của tích này, ta sẽ có kết quả của phép chồng. Đó là: π sin t t ĐỊnh lý PaRseval Dạng sóng của một hàm và của biến đổi Fourrier của nó thì rất ít giống nhau. Tuy nhiên, một vài hệ thức hiện hữu giữa năng lượng của một hàm thời gian và năng lượng của biến đổi Fourrier của nó. Trang II.19 Cơ sở viễn thông Phạm Văn Tấn Dùng “ năng lượng “ để chỉ tích phân của bình phương của hàm. Từ này được dùng và nó biểu diễn trị giá năng lượng ( watt - sec ) tiêu tán trong điện trở 1Ω nếu tín hiệu là điện thế hoặc dòng điện ngang qua điện trở. Ta có: r(t) s(t) ↔ R(f) * S(f) ∞ F [ r(t) s(t) ] = ∫ r(t)s(t)e −∞ − j 2πft dt (2.46) ∞ = ∫ R(k)S(f − k) dk −∞ Vì đẳng thức này đúng với mọi f, ta đặt f = 0. Khi đó: ∞ ∞ ∫ r(t)s(t) dt = ∫ R(k)S(− k) dk −∞ −∞ (2.47) Biểu thức (2.47) là một dạng của công thức Paseval. Nó liên quan đến năng lượng nên ta xét trường hợp đặc biệt: s(t) = r * (t) r*(t) là liên hợp của r(t). F [ r*(t)] cho bởi liên hợp của biến đổi Fourrier, bị phản xạ qua trục dọc. Đó là R*(-f). Dùng kết quả của (2.47), ta được: ∞ ∞ −∞ ∫ r (t) dt = ∫ R (f ) df 2 −∞ 2 (2.48) Phương trình (2.48) chứng tỏ rằng năng lượng của hàm theo t thì bằng với năng lượng của biến đổi Fourrier của nó. NHỮNG tính chẤt cỦa biẾn đỔi Fourrier 1. Thực / ảo - Chẳn / lẻ. Bảng sau đây tóm tắt những tính chất của biến đổi Fourrier dựa trên sự quan sát quan sát hàm theo t. Hàm thời gian Biến đổi Fourrier A Thực Phần thực chẳn - Phần ảo lẻ B Thực và chẳn Thực và chẳn C Thực và lẻ Ảo và lẻ D Ảo Phần thực lẻ - Phần ảo chẳn E Ảo và chẳn Ảo và chẳn Trang II.20
DMCA.com Protection Status Copyright by webtailieu.net