logo

Bài giải phần giải mạch P13


Chapter 13, Solution 1. For coil 1, L1 – M12 + M13 = 6 – 4 + 2 = 4 For coil 2, L2 – M21 – M23 = 8 – 4 – 5 = – 1 For coil 3, L3 + M31 – M32 = 10 + 2 – 5 = 7 LT = 4 – 1 + 7 = 10H or LT = L1 + L2 + L3 – 2M12 – 2M23 + 2M12 LT = 6 + 8 + 10 = 10H Chapter 13, Solution 2. L = L1 + L2 + L3 + 2M12 – 2M23 2M31 = 10 + 12 +8 + 2x6 – 2x6 –2x4 = 22H Chapter 13, Solution 3. L1 + L2 + 2M = 250 mH (1) L1 + L2 – 2M = 150 mH (2) Adding (1) and (2), 2L1 + 2L2 = 400 mH But, L1 = 3L2,, or 8L2 + 400, and L2 = 50 mH L1 = 3L2 = 150 mH From (2), 150 + 50 – 2M = 150 leads to M = 25 mH k = M/ L1 L 2 = 2.5 / 50x150 = 0.2887 Chapter 13, Solution 4. (a) For the series connection shown in Figure (a), the current I enters each coil from its dotted terminal. Therefore, the mutually induced voltages have the same sign as the self-induced voltages. Thus, Leq = L1 + L2 + 2M Is L1 I1 I2 + Vs – L2 L1 L2 Leq (a) (b) (b) For the parallel coil, consider Figure (b). Is = I 1 + I2 and Zeq = Vs/Is Applying KVL to each branch gives, Vs = jωL1I1 + jωMI2 (1) Vs = jωMI1 + jω L2I2 (2)  Vs   jωL1 jωM   I1  or  V  =  jωM jωL 2  I 2   s    ∆ = –ω2L1L2 + ω2M2, ∆1 = jωVs(L2 – M), ∆2 = jωVs(L1 – M) I1 = ∆1/∆, and I2 = ∆2/∆ Is = I1 + I2 = (∆1 + ∆2)/∆ = jω(L1 + L2 – 2M)Vs/( –ω2(L1L2 – M)) Zeq = Vs/Is = jω(L1L2 – M)/[jω(L1 + L2 – 2M)] = jωLeq i.e., Leq = (L1L2 – M)/(L1 + L2 – 2M) Chapter 13, Solution 5. (a) If the coils are connected in series, L = L1 + L 2 + 2M = 25 + 60 + 2(0.5) 25x 60 = 123.7 mH (b) If they are connected in parallel, L1 L 2 − M 2 25x 60 − 19.36 2 L= = mH = 24.31 mH L1 + L 2 − 2M 25 + 60 − 2x19.36 Chapter 13, Solution 6. V1 = (R1 + jωL1)I1 – jωMI2 V2 = –jωMI1 + (R2 + jωL2)I2 Chapter 13, Solution 7. Applying KVL to the loop, 20∠30° = I(–j6 + j8 + j12 + 10 – j4x2) = I(10 + j6) where I is the loop current. I = 20∠30°/(10 + j6) Vo = I(j12 + 10 – j4) = I(10 + j8) = 20∠30°(10 + j8)/(10 + j6) = 22∠37.66° V Chapter 13, Solution 8. Consider the current as shown below. j2 1Ω 4Ω + + 10 – I1 j6 j4 I2 -j3 Vo – For mesh 1, 10 = (1 + j6)I1 + j2I2 (1) For mesh 2, 0 = (4 + j4 – j3)I2 + j2I1 0 = j2I1 +(4 + j)I2 (2) In matrix form, 10 1 + j6 j2   I1   0  =  j2 4+ j  I 2       ∆ = 2 + j25, and ∆2 = –j20 I2 = ∆2/∆ = –j20/(2 + j25) Vo = –j3I2 = –60/(2 + j25) = 2.392∠94.57° Chapter 13, Solution 9. Consider the circuit below. 2Ω 2Ω -j1 + 8∠30o – j4 + I1 j4 I2 -j2V – For loop 1, 8∠30° = (2 + j4)I1 – jI2 (1) For loop 2, ((j4 + 2 – j)I2 – jI1 + (–j2) = 0 or I1 = (3 – j2)i2 – 2 (2) Substituting (2) into (1), 8∠30° + (2 + j4)2 = (14 + j7)I2 I2 = (10.928 + j12)/(14 + j7) = 1.037∠21.12° Vx = 2I2 = 2.074∠21.12° Chapter 13, Solution 10. Consider the circuit below. jωM jωL jωL Io I1 I2 Iin∠0o 1/jωC M = k L1 L 2 = L2 = L, I1 = Iin∠0°, I2 = Io Io(jωL + R + 1/(jωC)) – jωLIin – (1/(jωC))Iin = 0 Io = j Iin(ωL – 1/(ωC)) /(R + jωL + 1/(jωC)) Chapter 13, Solution 11. Consider the circuit below. R2 V2 +– I3 R1 jωL1 jωM 1/jωC V1 + I1 jωL2 – I2 For mesh 1, V1 = I1(R1 + 1/(jωC)) – I2(1/jωC)) –R1I3 For mesh 2, 0 = –I1(1/(jωC)) + (jωL1 + jωL2 + (1/(jωC)) – j2ωM)I2 – jωL1I3 + jωMI3 For mesh 3, –V2 = –R1I1 – jω(L1 – M)I2 + (R1 + R2 + jωL1)I3 or V2 = R1I1 + jω(L1 – M)I2 – (R1 + R2 + jωL1)I3 Chapter 13, Solution 12. Let ω = 1. j4 j2 • + j6 j8 j10 1V - I1 I2 • Applying KVL to the loops, 1 = j8 I 1 + j 4 I 2 (1) 0 = j 4 I 1 + j18 I 2 (2) Solving (1) and (2) gives I1 = -j0.1406. Thus 1 1 Z= = jLeq  → Leq = = 7.111 H I1 jI 1 We can also use the equivalent T-section for the transform to find the equivalent inductance. Chapter 13, Solution 13. We replace the coupled inductance with an equivalent T-section and use series and parallel combinations to calculate Z. Assuming that ω = 1, La = L1 − M = 18 − 10 = 8, Lb = L2 − M = 20 − 10 = 10, Lc = M = 10 The equivalent circuit is shown below: 12 Ω j8 Ω j10 Ω 2Ω j10 Ω -j6 Ω Z j4 Ω Z=12 +j8 + j14//(2 + j4) = 13.195 + j11.244Ω Chapter 13, Solution 14. To obtain VTh, convert the current source to a voltage source as shown below. j2 5Ω j6 Ω j8 Ω -j3 Ω 2Ω a + I + + 8V – j10 V – VTh – b Note that the two coils are connected series aiding. ωL = ωL1 + ωL2 – 2ωM jωL = j6 + j8 – j4 = j10 Thus, –j10 + (5 + j10 – j3 + 2)I + 8 = 0 I = (– 8 + j10)/ (7 + j7) But, –j10 + (5 + j6)I – j2I + VTh = 0 VTh = j10 – (5 + j4)I = j10 – (5 + j4)(–8 + j10)/(7 + j7) VTh = 5.349∠34.11° To obtain ZTh, we set all the sources to zero and insert a 1-A current source at the terminals a–b as shown below. j2 5Ω j6 Ω j8 Ω -j3 Ω 2Ω a + I1 1A Vo I2 – b Clearly, we now have only a super mesh to analyze. (5 + j6)I1 – j2I2 + (2 + j8 – j3)I2 – j2I1 = 0 (5 + j4)I1 + (2 + j3)I2 = 0 (1) But, I2 – I1 = 1 or I2 = I1 – 1 (2) Substituting (2) into (1), (5 + j4)I1 +(2 + j3)(1 + I1) = 0 I1 = –(2 + j3)/(7 + j7) Now, ((5 + j6)I1 – j2I1 + Vo = 0 Vo = –(5 + j4)I1 = (5 + j4)(2 + j3)/(7 + j7) = (–2 + j23)/(7 + j7) = 2.332∠50° ZTh = Vo/1 = 2.332∠50° ohms Chapter 13, Solution 15. To obtain IN, short-circuit a–b as shown in Figure (a). 20 Ω j20 Ω 20 Ω j20 Ω a a j5 j5 I1 j10 Ω 1 + j10 Ω + – IN – 60∠30o I1 I2 I2 b b (a) (b) For mesh 1, 60∠30° = (20 + j10)I1 + j5I2 – j10I2 or 12∠30° = (4 + j2)I1 – jI2 (1) For mesh 2, 0 = (j20 + j10)I2 – j5I1 – j10I1 or I1 = 2I2 (2) Substituting (2) into (1), 12∠30° = (8 + j3)I2 IN = I2 = 12∠30°/(8 + j3) = 1.404∠9.44° A To find ZN, we set all the sources to zero and insert a 1-volt voltage source at terminals a– b as shown in Figure (b). For mesh 1, 1 = I1(j10 + j20 – j5x2) + j5I2 1 = j20I1 + j5I2 (3) For mesh 2, 0 = (20 + j10)I2 + j5I1 – j10I1 = (4 + j2)I2 – jI1 or I2 = jI1/(4 + j2) (4) Substituting (4) into (3), 1 = j20I1 + j(j5)I1/(4 + j2) = (–1 + j20.5)I1 I1 = 1/(–1 + j20.5) ZN = 1/I1 = (–1 + j20.5) ohms Chapter 13, Solution 16. To find IN, we short-circuit a-b. jΩ 8Ω -j2 Ω a • • + j4 Ω j6 Ω I2 IN 80∠0 V o I1 - b − 80 + (8 − j 2 + j 4) I 1 − jI 2 = 0 → (8 + j 2) I 1 − jI 2 = 80 (1) j 6 I 2 − jI 1 = 0  → I1 = 6I 2 (2) Solving (1) and (2) leads to 80 IN = I2 = = 1.584 − j 0.362 = 1.6246∠ − 12.91o A 48 + j11 To find ZN, insert a 1-A current source at terminals a-b. Transforming the current source to voltage source gives the circuit below. jΩ 8Ω -j2 Ω 2Ω a • • + j4 Ω j6 Ω I2 2V I1 - b jI 2 0 = (8 + j 2) I 1 − jI 2  → I1 = (3) 8 + j2 2 + (2 + j 6) I 2 − jI 1 = 0 (4) Solving (3) and (4) leads to I2 = -0.1055 +j0.2975, Vab=-j6I2 = 1.7853 +0.6332 Vab ZN = = 1.894∠19.53o Ω 1 Chapter 13, Solution 17. Z = -j6 // Zo where 144 Z o = j20 + = 0.5213 + j15.7 j30 − j2 + j5 + 4 − j6 xZ o Z= = 0.1989 − j9.7Ω − j6 + Z o Chapter 13, Solution 18. Let ω = 1. L1 = 5, L2 = 20, M = k L1 L2 = 0.5 x10 = 5 We replace the transformer by its equivalent T-section. La = L1 − (− M ) = 5 + 5 = 10, Lb = L1 + M = 20 + 5 = 25, Lc = − M = −5 We find ZTh using the circuit below. -j4 j10 j25 j2 -j5 ZTh 4+j6 j 6(4 + j ) Z Th = j 27 + (4 + j ) //( j 6) = j 27 + = 2.215 + j 29.12Ω 4 + j7 We find VTh by looking at the circuit below. -j4 j10 j25 j2 + -j5 + VTh o 120Chapter 13, Solution 20. Transform the current source to a voltage source as shown below. k=0.5 4Ω j10 j10 8Ω I3 + – j12 I1 -j5 I2 + 20∠0o – k = M/ L1 L 2 or M = k L1 L 2 ωM = k ωL1ωL 2 = 0.5(10) = 5 For mesh 1, j12 = (4 + j10 – j5)I1 + j5I2 + j5I2 = (4 + j5)I1 + j10I2 (1) For mesh 2, 0 = 20 + (8 + j10 – j5)I2 + j5I1 + j5I1 –20 = +j10I1 + (8 + j5)I2 (2)  j12 4 + j5 + j10   I1  From (1) and (2),  20  =  + j10 8 + j5 I      2  ∆ = 107 + j60, ∆1 = –60 –j296, ∆2 = 40 – j100 I1 = ∆1/∆ = 2.462∠72.18° A I2 = ∆2/∆ = 0.878∠–97.48° A I3 = I1 – I2 = 3.329∠74.89° A i1 = 2.462 cos(1000t + 72.18°) A i2 = 0.878 cos(1000t – 97.48°) A At t = 2 ms, 1000t = 2 rad = 114.6° i1 = 0.9736cos(114.6° + 143.09°) = –2.445 i2 = 2.53cos(114.6° + 153.61°) = –0.8391 The total energy stored in the coupled coils is w = 0.5L1i12 + 0.5L2i22 – Mi1i2 Since ωL1 = 10 and ω = 1000, L1 = L2 = 10 mH, M = 0.5L1 = 5mH w = 0.5(10)(–2.445)2 + 0.5(10)(–0.8391)2 – 5(–2.445)(–0.8391) w = 43.67 mJ Chapter 13, Solution 21. For mesh 1, 36∠30° = (7 + j6)I1 – (2 + j)I2 (1) For mesh 2, 0 = (6 + j3 – j4)I2 – 2I1 jI1 = –(2 + j)I1 + (6 – j)I2 (2) 36∠30°  7 + j6 − 2 − j  I1  Placing (1) and (2) into matrix form,  0  = − 2 − j 6 − j  I      2  ∆ = 48 + j35 = 59.41∠36.1°, ∆1 = (6 – j)36∠30° = 219∠20.54° ∆2 = (2 + j)36∠30° = 80.5∠56.56°, I1 = ∆1/∆ = 3.69∠–15.56°, I2 = ∆2/∆ = 1.355∠20.46° Power absorbed fy the 4-ohm resistor, = 0.5(I2)24 = 2(1.355)2 = 3.672 watts Chapter 13, Solution 22. With more complex mutually coupled circuits, it may be easier to show the effects of the coupling as sources in terms of currents that enter or leave the dot side of the coil. Figure 13.85 then becomes, -j50 Io I3 j20Ic j10Ib j60 j40 + − + − − + − + Ia Ix − j30Ib j20Ia j30Ic + 50∠0° V + j80 100 Ω − I1 I2 Ib − + j10Ia Note the following, Ia = I 1 – I3 Ib = I2 – I1 Ic = I 3 – I2 and Io = I 3 Now all we need to do is to write the mesh equations and to solve for Io. Loop # 1, -50 + j20(I3 – I2) j 40(I1 – I3) + j10(I2 – I1) – j30(I3 – I2) + j80(I1 – I2) – j10(I1 – I3) = 0 j100I1 – j60I2 – j40I3 = 50 Multiplying everything by (1/j10) yields 10I1 – 6I2 – 4I3 = - j5 (1) Loop # 2, j10(I1 – I3) + j80(I2–I1) + j30(I3–I2) – j30(I2 – I1) + j60(I2 – I3) – j20(I1 – I3) + 100I2 = 0 -j60I1 + (100 + j80)I2 – j20I3 = 0 (2) Loop # 3, -j50I3 +j20(I1 –I3) +j60(I3 –I2) +j30(I2 –I1) –j10(I2 –I1) +j40(I3 –I1) –j20(I3 –I2) = 0 -j40I1 – j20I2 + j10I3 = 0 Multiplying by (1/j10) yields, -4I1 – 2I2 + I3 = 0 (3) Multiplying (2) by (1/j20) yields -3I1 + (4 – j5)I2 – I3 = 0 (4) Multiplying (3) by (1/4) yields -I1 – 0.5I2 – 0.25I3 = 0 (5) Multiplying (4) by (-1/3) yields I1 – ((4/3) – j(5/3))I2 + (1/3)I3 = -j0.5 (7) Multiplying [(6)+(5)] by 12 yields (-22 + j20)I2 + 7I3 = 0 (8) Multiplying [(5)+(7)] by 20 yields -22I2 – 3I3 = -j10 (9) (8) leads to I2 = -7I3/(-22 + j20) = 0.2355∠42.3o = (0.17418+j0.15849)I3 (10) (9) leads to I3 = (j10 – 22I2)/3, substituting (1) into this equation produces, I3 = j3.333 + (-1.2273 – j1.1623)I3 or I3 = Io = 1.3040∠63o amp. Chapter 13, Solution 23. ω = 10 0.5 H converts to jωL1 = j5 ohms 1 H converts to jωL2 = j10 ohms 0.2 H converts to jωM = j2 ohms 25 mF converts to 1/(jωC) = 1/(10x25x10-3) = –j4 ohms The frequency-domain equivalent circuit is shown below. j2 j5 j10 + I1 –j4 I2 12∠0° − 5Ω For mesh 1, 12 = (j5 – j4)I1 + j2I2 – (–j4)I2 –j2 = I1 + 6I2 (1) For mesh 2, 0 = (5 + j10)I2 + j2I1 –(–j4)I1 0 = (5 + j10)I2 + j6I1 (2) From (1), I1 = –j12 – 6I2 Substituting this into (2) produces, I2 = 72/(–5 + j26) = 2.7194∠–100.89° I1 = –j12 – 6 I2 = –j12 – 163.17∠–100.89 = 5.068∠52.54° Hence, i1 = 5.068cos(10t + 52.54°) A, i2 = 2.719cos(10t – 100.89°) A. At t = 15 ms, 10t = 10x15x10-3 0.15 rad = 8.59° i1 = 5.068cos(61.13°) = 2.446 i2 = 2.719cos(–92.3°) = –0.1089 w = 0.5(5)(2.446)2 + 0.5(1)(–0.1089)2 – (0.2)(2.446)(–0.1089) = 15.02 J Chapter 13, Solution 24. (a) k = M/ L1 L 2 = 1/ 4 x 2 = 0.3535 (b) ω = 4 1/4 F leads to 1/(jωC) = –j/(4x0.25) = –j 1||(–j) = –j/(1 – j) = 0.5(1 – j) 1 H produces jωM = j4 4 H produces j16 2 H becomes j8 j4 2Ω j8 + I1 I2 0.5(1–j) 12∠0° − j16 12 = (2 + j16)I1 + j4I2 or 6 = (1 + j8)I1 + j2I2 (1) 0 = (j8 + 0.5 – j0.5)I2 + j4I1 or I1 = (0.5 + j7.5)I2/(–j4) (2) Substituting (2) into (1), 24 = (–11.5 – j51.5)I2 or I2 = –24/(11.5 + j51.5) = –0.455∠–77.41° Vo = I2(0.5)(1 – j) = 0.3217∠57.59° vo = 321.7cos(4t + 57.6°) mV (c) From (2), I1 = (0.5 + j7.5)I2/(–j4) = 0.855∠–81.21° i1 = 0.885cos(4t – 81.21°) A, i2 = –0.455cos(4t – 77.41°) A At t = 2s, 4t = 8 rad = 98.37° i1 = 0.885cos(98.37° – 81.21°) = 0.8169 i2 = –0.455cos(98.37° – 77.41°) = –0.4249 w = 0.5L1i12 + 0.5L2i22 + Mi1i2 = 0.5(4)(0.8169)2 + 0.5(2)(–.4249)2 + (1)(0.1869)(–0.4249) = 1.168 J Chapter 13, Solution 25. m = k L1 L 2 = 0.5 H We transform the circuit to frequency domain as shown below. 12sin2t converts to 12∠0°, ω = 2 0.5 F converts to 1/(jωC) = –j 2 H becomes jωL = j4 j1 Io 4 Ω a 1Ω 2Ω –j1 + j2 j2 12∠0° − j4 10 Ω b Applying the concept of reflected impedance, Zab = (2 – j)||(1 + j2 + (1)2/(j2 + 3 + j4)) = (2 – j)||(1 + j2 + (3/45) – j6/45) = (2 – j)||(1 + j2 + (3/45) – j6/45) = (2 – j)||(1.0667 + j1.8667) =(2 – j)(1.0667 + j1.8667)/(3.0667 + j0.8667) = 1.5085∠17.9° ohms Io = 12∠0°/(Zab + 4) = 12/(5.4355 + j0.4636) = 2.2∠–4.88° io = 2.2sin(2t – 4.88°) A Chapter 13, Solution 26. M = k L1L 2 ωM = k ωL1ωL 2 = 0.6 20x 40 = 17 The frequency-domain equivalent circuit is shown below. j17 50 Ω –j30 Io + I1 j20 j40 200∠60° I2 10 Ω − For mesh 1, 200∠60° = (50 – j30 + j20)I1 + j17I2 = (50 – j10)I1 + j17I2 (1) For mesh 2, 0 = (10 + j40)I2 + j17I1 (2) 200∠60° 50 − j10 j17   I1  In matrix form,  0  =  j17 10 + j40 I 2       ∆ = 900 + j100, ∆1 = 2000∠60°(1 + j4) = 8246.2∠136°, ∆2 = 3400∠–30° I2 = ∆2/∆ = 3.755∠–36.34° Io = I2 = 3.755∠–36.34° A Switching the dot on the winding on the right only reverses the direction of Io. This can be seen by looking at the resulting value of ∆2 which now becomes 3400∠150°. Thus, Io = 3.755∠143.66° A
DMCA.com Protection Status Copyright by webtailieu.net