logo

Bất đẳng thức lượng giác - Chương 4


Truòng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 4 M t s chuyên ñ bài vi t hay,thú v liên quan ñ n b t ñ ng th c và lư ng giác Chương 4 : M t s chuyên ñ bài vi t hay, thú v liên quan ñ n b t ñ ng th c và lư ng giác ðúng như tên g i c a mình, chương này s bao g m các bài vi t chuyên ñ v b t ñ ng th c và lư ng giác. Tác gi c a chúng ñ u là các giáo viên, h c sinh gi i toán mà tác gi ñánh giá r t cao. N i dung c a các bài vi t chuyên ñ ñ u d hi u và m ch l c. B n ñ c có th tham kh o nhi u ki n th c b ích t chúng. Vì khuôn kh chuyên ñ nên tác gi ch t p h p ñư c m t s bài vi t th t s là hay và thú v : M cl c: Xung quanh bài toán Ecdôs trong tam giác ……………………………………….78 ng d ng c a ñ i s vào vi c phát hi n và ch ng minh b t ñ ng th c trong tam giác…………………………………………………………………………………82 Th tr v c i ngu n c a môn Lư ng giác………………………………...............91 Phương pháp gi i m t d ng b t ñ ng th c lư ng giác trong tam giác…….............94 The Inequalities Trigonometry 77 Truòng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 4 M t s chuyên ñ bài vi t hay,thú v liên quan ñ n b t ñ ng th c và lư ng giác Xung quanh bài toán Ecdôs trong tam giác Nguy n Văn Hi n (Thái Bình) B t ñ ng th c trong tam giác luôn là ñ tài r t hay. Trong bài vi t nh này, chúng ta cùng trao ñ i v m t b t ñ ng th c quen thu c : B t ñ ng th c Ecdôs. Bài toán 1 : Cho m t ñi m M trong ∆ABC . G i Ra , Rb , Rc là kho ng cách t M ñ n A, B, C và d a , d b , d c là kho ng cách t M ñ n BC , CA, AB thì : Ra + Rb + Rc ≥ 2(d a + d b + d c ) (E ) Gi i : Ta có : 2S − 2S BMC R a ≥ ha − d a = ABC a 2S + 2S AMC = AMB a cd + bd b = c a B ng cách l y ñ i x ng M qua phân giác góc A bd + cd b  ⇒ Ra ≥ c  a  ad c + cd a  Tương t : Rb ≥  (1) b  ad b + bd a  Rc ≥  c  b c a c a b ⇒ Ra + Rb + Rc ≥ d a  +  + d b  +  + d c  +  ≥ 2(d a + d b + d c ) ⇒ ñpcm. c b c a b a Th c ra (E ) ch là trư ng h p riêng c a t ng quát sau : Bài toán 2 : Ch ng minh r ng : k k k ( k k Ra + Rb + Rc ≥ 2 k d a + d b + d c k ) (2) v i 1≥ k > 0 Gi i : Trư c h t ta ch ng minh : B ñ 1 : ∀x, y > 0 và 1 ≥ k > 0 thì : ( x + y )k ( ≥ 2 k −1 x k + y k ) (H ) Ch ng minh : k  k  (H ) ⇔  x + 1 ≥ 2 k −1  x k + 1 ⇔ f (a ) = (a + 1)k − 2 k −1 a k + 1 ≥ 0 v i x = a > 0  y   y  ( )     y [ k −1 k −1 ] Vì f ' (a ) = k (a + 1) − (2a ) = 0 ⇔ a = 1 ho c k = 1 . V i k = 1 thì (H ) là ñ ng th c ñúng. Do a > 0 và 1 > k > 0 thì ta có : f (a ) ≥ 0 ∀a > 0 và 1 > k > 0 The Inequalities Trigonometry 78 Truòng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 4 M t s chuyên ñ bài vi t hay,thú v liên quan ñ n b t ñ ng th c và lư ng giác ⇒ (H ) ñư c ch ng minh. Tr l i bài toán 2 : T h (1) ta có : k  bd c cd b  k  k −1  bd c  k  cd b   k Ra ≥  +  ≥ 2   +    a a   a   a     bd cd ( Áp d ng b ñ (H ) v i x = c ; y = b ) a a Tương t : k  k −1  ad c  k  cd a   k Rb ≥ 2   +    b   b     k  ad b  k  bd a  k  k −1 Rc ≥ 2   +    c   c      k  b  k  c  k    k a k c  k  k a k  b   k  ⇒ Ra + Rb + Rc ≥ 2 k −1 d a   +    + d b   +    + d c   +     k k k   c   b       c   a      b   a      ( k k ≥ 2k da + db + dc k ) ⇒ ñpcm. ð ng th c x y ra khi ∆ABC ñ u và M là tâm tam giác. Áp d ng (E ) ta ch ng minh ñư c bài toán sau : Bài toán 3 : Ch ng minh r ng : 1 1 1  1 1 1  + + ≥ 2R + +  (3) d a db dc  a Rb Rc   Gi i : Th c hi n phép ngh ch ñ o tâm M, phương tích ñơn v ta ñư c :  1  1 MA* = MA ' ' =  Ra  da  1  1 MB* = và MB ' ' =  Rb  db  1  1 MC* = MC ' ' =  Rc  dc Áp d ng (E ) trong ∆A ' ' B ' ' C ' ' : MA ' '+ MB ' '+ MC ' ' ≥ 2(MA * + MB * + MC *) 1 1 1  1 1 1  ⇔ + + ≥ 2 R + R + R   da db dc  a b c  ⇒ ñpcm. M r ng k t qu này ta có bài toán sau : Bài toán 4 : Ch ng minh r ng : ( k k k ) 2 k d a + d b + d c ≥ Ra + Rb + Rc (4) k k k The Inequalities Trigonometry 79 Truòng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 4 M t s chuyên ñ bài vi t hay,thú v liên quan ñ n b t ñ ng th c và lư ng giác v i 0 > k ≥ −1 Hư ng d n cách gi i : Ta th y (4) d dàng ñư c ch ng minh nh áp d ng (2) trong phép bi n hình ngh ch ñ o tâm M, phương tích ñơn v . ð ng th c x y ra khi ∆ABC ñ u và M là tâm tam giác. Bây gi v i k > 1 thì t h (1) ta thu ñư c ngay : Bài toán 5 : Ch ng minh r ng : 2 2 2 2 ( 2 2 Ra + Rb + Rc > 2 d a + d b + d c (5) ) Xu t phát t bài toán này, ta thu ñư c nh ng k t qu t ng quát sau : Bài toán 6 : Ch ng minh r ng : k k k ( Ra + Rb + Rc > 2 d a + d b + d c (6) k k k ) v i k >1 Gi i : Chúng ta cũng ch ng minh m t b ñ : B ñ 2 : ∀x, y > 0 và k > 1 thì : ( x + y )k ≥ x k + y k (G ) Ch ng minh : k (G ) ⇔  x + 1 > x k + 1 ⇔ g (a ) = (a + 1)k − a k − 1 > 0 (ñ t x = a > 0 ) k  y     y y [ k −1 Vì g ' (a ) = k (a + 1) − a k −1 ] > 0 ∀a > 0 ; k > 1 ⇒ g (a ) > 0 ∀a > 0 ; k > 1 ⇒ (G ) ñư c ch ng minh xong. S d ng b ñ (G ) vào bài toán (6) : T h (1) : k k k k  bd cd   bd   cd  bd c cd Ra ≥  c + b  >  c  +  b  (ñ t x = ; y= b)  a a   a   a  a a Tương t : k k k  ad c   cd a  Rb >   +   b   b  k k k  ad   bd  Rc >  b  +  a   c   c   k b k c  k  k a k c  k  k a k b  k ⇒ Ra + Rb + Rc > d a   +    + d b   +    + d c   +    k k k  c   b      c   a      b   a     ( k ≥ 2 da + db + dc k k ) ⇒ ñpcm. Bài toán 7 : Ch ng minh r ng : k k k k k d a + d a + d a > 2 Ra + Ra + Ra k ( ) (7) v i k < −1 The Inequalities Trigonometry 80 Truòng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 4 M t s chuyên ñ bài vi t hay,thú v liên quan ñ n b t ñ ng th c và lư ng giác Hư ng d n cách gi i : Ta th y (7 ) cũng ñư c ch ng minh d dàng nh áp d ng (6) trong phép bi n hình ngh ch ñ o tâm M, phương tích ñơn v . ð ng th c không th x y ra trong (6) và (7 ) . Xét v quan h gi a (Ra , Rb , Rc ) v i (d a , d b , d c ) ngoài b t ñ ng th c (E ) và nh ng m r ng c a nó, chúng ta còn g p m t s b t ñ ng th c r t hay sau ñây. Vi c ch ng minh chúng xin dành cho b n ñ c : 1) Ra Rb Rc ≥ 8d a d b d c db + dc da + dc da + db 2) + + ≤3 Ra Rb Rc 3) Ra Rb Rc ≥ (d a + d b )(d a + d c )(d b + d c ) 2 2 2 4) Ra Rb Rc ≥ (Ra d a + Rb d b )(Ra d a + Rc d c )(Rb d b + Rc d c ) The Inequalities Trigonometry 81 Truòng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 4 M t s chuyên ñ bài vi t hay,thú v liên quan ñ n b t ñ ng th c và lư ng giác ng d ng c a ñ i s vào vi c phát hi n và ch ng minh b t ñ ng th c trong tam giác Lê Ng c Anh (HS chuyên toán khóa 2005 – 2008 Trư ng THPT chuyên Lý T Tr ng, C n Thơ)  π 1/ Chúng ta ñi t bài toán ñ i s sau: V i ∀ x ∈  0,  ta luôn có:  2 x x 2x < tg < < sinx < x . 2 2 π 2x x 2x Ch ng minh: Ta ch ng minh 2 b t ñ ng th c: sin x > và tg < . π 2 π 1  π ð t f ( x) = sin x là hàm s xác ñ nh và liên t c trong  0,  . x  2 xcos x- sin x  π Ta có: f '( x) = 2 . ð t g ( x) = xcos x- sin x trong  0,  khi ñó x  2  π g ' ( x ) = − x sin x ≤ 0 ⇒ g ( x ) ngh ch bi n trong ño n 0,  nên g ( x ) < g ( 0 ) =0 v i  2  π  π π  2 2x x ∈  0,  . Do ñó f ' ( x ) < 0 v i ∀x ∈  0,  suy ra f ( x ) > f   = hay sin x >  2  2 2 π π  π v i ∀x ∈  0,  .  2 1  π ð t h ( x ) = tgx xác ñ nh và liên t c trên  0,  . x  2 x − sin x  π Ta có h ' ( x ) = > 0 ∀x ∈  0,  nên hàm s h ( x ) ñ ng bi n, do 2 x 2 cos 2 x  2 2  x π x 2x  π ñó h ( x ) < h   = hay tg < v i ∀x ∈  0,  . 2 2 2 π  2 x x Còn 2 b t ñ ng th c tg > và sin x < x dành cho b n ñ c t ch ng minh. 2 2 Bây gi m i là ph n ñáng chú ý: Xét ∆ABC : BC = a , BC = b , AC = b . G i A, B, C là ñ l n các góc b ng radian; r, R, p, S l n lư t là bán kính ñư ng tròn n i ti p, bán kính ñư ng tròn ngo i ti p, n a chu vi và di n tích tam giác; la, ha, ma, ra, tương ng là ñ dài ñư ng phân giác, ñư ng cao, ñư ng trung tuy n và bán kính ñư ng tròn bàng ti p ng v i ñ nh A... Bài toán 1: Ch ng minh r ng trong tam giác ABC nh n ta luôn có: pπ p < Acos 2 x + Bcos 2 B + Ccos 2C < 4R R The Inequalities Trigonometry 82 Truòng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 4 M t s chuyên ñ bài vi t hay,thú v liên quan ñ n b t ñ ng th c và lư ng giác Nh n xét: p T ñ nh lí hàm s sin quen thu c trong tam giác ta có: sin A + sin B + sin B = và R A 4 bài toán ñ i s ta d dàng ñưa ra bi n ñ i sau Acos2 A < 2tg cos2 A = sin A < Acos2 A , t 2 π ñó ñưa ñ n l i gi i như sau. L i gi i: A 4 p Ta có: Acos 2 A < 2tg cos 2 A = sin A < Acos 2 A ⇒ ∑ Acos 2 A < ∑ sin A = 2 π R 4 p pπ và π ∑ Acos2 A > ∑ sin A = R ⇒ ∑ Acos2 A > 4 R . T ñây suy ra ñpcm. A B B C C A Trong m t tam giác ta có nh n xét sau: tg tg + tg tg + tg tg = 1 k t h p 2 2 2 2 2 2 x 2x 2 A 2B 2B 2C 2C 2 A A B B C C A v i tg < nên ta có + + > tg tg + tg tg + tg tg = 1 ⇒ 2 π π π π π π π 2 2 2 2 2 2 2 π x x A.B + B.C + C. A > (1). M t khác tg > nên ta cũng d dàng có 4 2 2 A B B C C A A B B C C A + + < tg tg + tg tg + tg tg = 1 t ñây ta l i có 2 2 2 2 2 2 2 2 2 2 2 2 A.B + B.C + C. A < 4 (2). T (1) và (2) ta có bài toán m i. Bài toán 2: Ch ng minh r ng trong tam giác ABC nh n ta luôn có: π2 < A.B + B.C + C. A < 4 4 Lưu ý: Khi dùng cách này ñ sáng t o bài toán m i thì ñ toán là ∆ABC ph i là nh n  π vì trong bài toán ñ i s thì ∀x ∈  0,  . L i gi i bài toán tương t như nh n xét trên.  2 2 M t khác, áp d ng b t ñ ng th c ab + bc + ca ≤ (a + b + c) thì ta có ngay 3 2 ( A+ B + C) π2 A.B + B.C + C. A ≤ = . T ñây ta có bài toán “ch t” hơn và “ñ p” hơn: 3 3 π2 π2 〈 A.B + B.C + C. A ≤ 4 3 Bây gi ta th ñi t công th c la, ha, ma, ra ñ tìm ra các công th c m i. A A Trong ∆ABC ta luôn có: 2S = bc sin A = cla sin + bla sin 2 2 The Inequalities Trigonometry 83 Truòng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 4 M t s chuyên ñ bài vi t hay,thú v liên quan ñ n b t ñ ng th c và lư ng giác 1 b+c b+c 11 1 ⇒ = > =  +  la 2bccos A 2bc 2  b c  2 1 1 1 1 1 1 1  1 1 1  ⇒ + + > + + >  + +  la lb lc a b c 2 R  sin A sin B sin C  1 1 1 1 1 1 1 ⇒ + + >  + + . la lb lc 2 R  A B C  Như v y chúng ta có Bài toán 3. Bài toán 3: Ch ng minh r ng trong tam giác ABC nh n ta luôn có: 1 1 1 1 1 1 1 + + >  + +  la lb lc 2 R  A B C  bc b+c 2 R ( sin B + sin C ) M t khác, ta l i có = = . Áp d ng bài toán ñ i s ta la 2cos A π A 2sin  −  2 2 2 ñư c: 2( B + C ) R(B + C) R π R ( B + C ) bc 4 R ( B + C ) bc π bc 4 R π> > ⇒ > > ⇒ πR > > . π−A la π A B+C la π (B + C) la π − 2 2 ab 4 R ca 4 R Hoàn toàn tương t ta có: π R > > và π R > > . T ñây, c ng 3 chu i b t lc π lb π ñ ng th c ta ñư c: Bài toán 4: Ch ng minh r ng trong tam giác ABC nh n ta luôn có: 12 R ab bc ca < + + < 3π R π lc la lb h h h h h h Trong tam giác ta có k t qu sin A = b = c , sin B = c = a và sin C = a = b , c b a c b a mà t k t qu c a bài toán ñ i s ta d dàng có 2 < sin A + sin B + sin C < π , mà 1 1 1 1 1 1 2 ( sin A + sin B + sin C ) = ha  +  + hb  +  + hc  +  , t ñây ta có ñư c Bài b c c a a b toán 5. Bài toán 5: Ch ng minh r ng trong tam giác ABC nh n ta luôn có: 1 1 1 1 1 1 4 < ha  +  + hb  +  + hc  +  < 2π b c c a a b Ta xét ti p bài toán sau: Bài toán 6: Ch ng minh r ng trong tam giác nh n ta luôn có: 4 2 2 2 ma + mb + mc2 2 2 2 ( A + B +C ) < 2 < A2 + B 2 + C 2 π 3R The Inequalities Trigonometry 84 Truòng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 4 M t s chuyên ñ bài vi t hay,thú v liên quan ñ n b t ñ ng th c và lư ng giác 2 2 b2 + c2 a2 Nh n xét:Liên h v i ma trong tam giác ta có ma = − , t ñó ta suy ra 2 4 3 ma + mb + mc2 = ( a 2 + b 2 + c 2 ) = 3R 2 ( sin 2 A + sin 2 B + sin 2 C ) và t ñưa ñ n l i gi i. 2 2 4 L i gi i: 4x2 4 A2 Áp d ng bài toán ñ i s ta ñư c: 2 < sin x < x ta l n lư t có: 2 < sin2 A < A2 , 2 2 π π 2 2 4B 4C 2 < sin 2 B < B 2 và 2 < sin 2 C < C 2 . π π C ng 3 chu i b t ñ ng th c trên ta ñư c: 4 π 2 (A 2 + B 2 + C 2 ) < sin 2 A + s in 2 B + sin 2 C < A 2 + B 2 + C 2 , mà ta có: ma + mb + mc2 2 2 ma + mb + mc2 = 3R 2 ( sin 2 A + sin 2 B + sin C 2 ) ⇔ 2 2 2 = ( sin2 A + sin2 B + sin2 C ) , t 3R 4 ma + mb + mc2 2 2 ñây ta ñư c: 2 ( A2 + B 2 + C 2 ) < 2 < A2 + B 2 + C 2 (ñpcm). π 3R Bây gi ta th sáng t o m t b t ñ ng th c liên quan t i ra, ta có công th c tính ra là A x x 2x A r 2A ra = ptg , t bài toán ñ i s < tg < ch c ch n ta d dàng tìm th y < a < 2 2 2 π 2 p π B r 2B C r 2C , tương t ta cũng có < a < và < a < , c ng 3 chu i b t 2 p π 2 p π A + B + C ra + rb + rc 2 ( A + B + C ) ñ ng th c ta thu ñư c < < và ta thu ñư c Bài toán 7. 2 p π Bài toán 7: Ch ng minh r ng trong tam giác ABC nh n ta luôn có: A + B + C ra + rb + rc 2 ( A + B + C ) < < 2 p π Ta tìm hi u bài toán sau: Bài toán 8: Ch ng minh r ng trong tam giác ABC nh n ta luôn có: π ( 2 R − r ) < aA + bB + cC < 4 ( 2 R − r ) A B C A Nh n xét: Ta có các k t qu : ra = ptg , rb = ptg , rc = ptg , r = ( p − a ) tg = 2 2 2 2 B C A B C = ( p − b ) tg = ( p − c ) tg d n ñ n ra = r + atg , rb = r + btg , rc = r + ctg và 2 2 2 2 2 ra + rb + rc = 4 R + r (các k t qu này b n ñ c t ch ng minh), t ñó ta suy ra A A A 4 R + r = 3r + ptg + ptg + ptg và nh k t qu này ta d dàng ñánh giá t ng 2 2 2 aA + bB + cC t bài toán ñ i s nên ta d có l i gi i như sau. L i gi i: The Inequalities Trigonometry 85 Truòng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 4 M t s chuyên ñ bài vi t hay,thú v liên quan ñ n b t ñ ng th c và lư ng giác A B C A B C Ta có: ra = ptg , rb = ptg , rc = ptg , r = ( p − a ) tg = ( p − b) tg = ( p − c) tg , t 2 2 2 2 2 2 A B C ñó d n ñ n ra = r + atg , rb = r + btg , rc = r + ctg . Mà ta l i có: ra + rb + rc = 4 R + r 2 2 2 A A A suy ra 4R + r = 3r + ptg + ptg + ptg . Áp d ng bài toán ñ i s ta ñư c: 2 2 2 A A A 2 ● 4R + r = 3r + ptg + ptg + ptg < 3r + ( aA + bB + cC ) 2 2 2 π ⇔ π ( 2R − r ) < aA + bB + cC A A A 1 ● 4R + r = 3r + ptg + ptg + ptg > 3r + ( aA + bB + cC ) 2 2 2 2 ⇔ 4 ( 2R − r ) > aA + bB + cC K t h p 2 ñi u trên ta có ñi u ph i ch ng minh. Sau ñây là các bài toán ñư c hình thành t các công th c quen thu c ñ các b n luy n t p: Bài toán: Ch ng minh r ng trong tam giác ABC nh n ta luôn có: a/ 2π p − 8 ( R + r ) < aA + bB + cC < 2π p − 2π ( R + r ) . πS b/ < ( p − a )( p − b ) + ( p − b )( p − c ) + ( p − c )( p − a ) < 2S . 2 π c/ abc < a 2 ( p − a ) + b 2 ( p − b ) + c 2 ( p − c ) < abc . 2 1 1 1 1 1 1 d/ 4 < la  +  + lb  +  + lc  +  < 2π . b c c a a b x 2/Chúng ta xét hàm: f ( x ) = v i ∀ x ∈ ( 0,π ) . sinx s inx-xcosx Ta có f ( x ) là hàm s xác ñ nh và liên t c trong ( 0, π ) và f ' ( x ) = .ð t sin 2 x g ( x ) = s inx-xcosx , x ∈ ( 0, π ) , ta có g ' ( x ) = x sin x ≥ 0 ⇒ g ( x ) ñ ng bi n trong ño n ⇒ g ( x ) > g ( 0 ) = 0 ⇒ f ' ( x ) > 0 nên hàm f ( x ) ñ ng bi n . ( 0, π ) Chú ý 3 b t ñ ng th c ñ i s : 1.B t ñ ng th c AM-GM: Cho n s th c dương a1 , a2 ,..., an , ta luôn có: a1 + a2 + ... + an n ≥ a1a2 ...an n D u “=” x y ra ⇔ a1 = a2 = ... = an . 2.B t ñ ng th c Cauchy-Schwarz: Cho 2 b n s ( a1 , a2 ,..., an ) và ( b1 , b2 ,..., bn ) trong ñó bi > 0, i = 1, n . Ta luôn có: The Inequalities Trigonometry 86 Truòng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 4 M t s chuyên ñ bài vi t hay,thú v liên quan ñ n b t ñ ng th c và lư ng giác 2 a12 a2 2 a 2 ( a + a + ... + an ) + + ... + n ≥ 1 2 b1 b2 bn b1 + b2 + ... + bn a a a D u “=” x y ra ⇔ 1 = 2 = ... = n . b1 b2 bn 3.B t ñ ng th c Chebyshev: Cho 2 dãy ( a1 , a2 ,..., an ) và ( b1 , b2 ,..., bn ) cùng tăng ho c cùng gi m, t c là: a1 ≤ a2 ≤ ... ≤ an a1 ≥ a2 ≥ ... ≥ an  ho c  , thì ta có: b1 ≤ b2 ≤ ... ≤ bn b1 ≥ b2 ≥ ... ≥ bn a1b1 + a2b2 + ... + an bn a1 + a2 + ... + an b1 + b2 + ... + bn ≤ . n n n  a1 = a2 = ... = an D u “ = ” x y ra  . b1 = b2 = ... = bn N u 2 dãy ñơn ñi u ngư c chi u thì ñ i chi u d u b t ñ ng th c. Xét trong tam giác ABC có A ≥ B (A,B s ño hai góc A,B c a tam giác theo radian). A B x ● A≥ B ⇒ ≥ ( theo ch ng minh trên thì hàm f ( x ) = ) sin A sin B sinx A B A a A a ⇒ ≥ ⇒ ≥ , mà A ≥ B ⇔ a ≥ b . Như v y ta suy ra n u a ≥ b thì ≥ a b B b B b 2R 2R (i). A B C • Hoàn toàn tương t : a ≥ b ≥ c ⇒ ≥ ≥ và như v y ta có a b c A B ( a − b )  −  ≥ 0 , ( b − c )  −  ≥ 0 và ( c − a )  −  ≥ 0 .C ng 3 B C C A   a b b c c a  A B A b t ñ ng th c ta ñư c ∑ ( a − b )  −  ≥ 0 ⇔ 2 ( A + B + C ) ≥ ∑( b + c ) (1). cyc a b cyc a - C ng A+ B +C vào 2 v c a (1) ta thu ñư c: A B C 3( A + B + C ) ≥ ( a + b + c)  + +  (2) a b c A - Tr A + B + C vào 2 v c a (1) ta thu ñư c: ( A + B + C ) ≥ 2∑ ( p − a ) (3). cyc a A Chú ý r ng A + B + C = π và a + b + c = 2 p nên (2) ⇔ 3π ≥ 2 p ∑ ⇔ cyc a A 3π A π ∑ a ≤ 2 p (ii), và (3) ⇔ ∑ ( p − a ) a ≤ 2 (iii). cyc cyc The Inequalities Trigonometry 87 Truòng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 4 M t s chuyên ñ bài vi t hay,thú v liên quan ñ n b t ñ ng th c và lư ng giác ● M t khác ta có th áp d ng b t ñ ng th c Chebyshev cho 2 b s A B C A B C  ≥ ≥  , ,  và ( p − a, p − b, p − c) . Ta có: a ≥ b ≥ c ⇒  a b c a b c  p−a ≤ p−b ≤ p−c  ∑( p − a) a ( p − a + p − b + p − c)  a + B + C   A A A  p∑ ⇒ cyc ≤  b c A a ⇔ ∑ ( p − a ) ≤ cyc . Mà 3 3 3 cyc a 3 A 3π A p∑ p p∑ A 3π A a 2p A a π ∑ a ≤ 2 p ta suy ra: ∑( p − a) a ≤ cyc ≤ 3 hay ∑ ( p − a ) a ≤ cyc ≤ 2 (iv). cyc cyc 3 cyc 3 ● Ta chú ý ñ n hai b t ñ ng th c (ii) và (iii): 1 A B C A  A.B.C  3 -Áp d ng b t ñ ng th c AM-GM cho 3 s , , ta ñư c: a b c ∑ a ≥ 3  a.b.c  k t cyc   1 3  A.B.C  3 3π a.b.c  2 p  h p v i b t ñ ng th c (ii) ta suy ra 3   ≤ ⇔ ≥  (v). M t  a.b.c  2p A.B.C  π  1 1 a  a.b.c  3  a.b.c 3 2 p khác, ta l i có ∑ ≥ 3   , mà theo (v) ta d dàng suy ra   ≥ , t ñó ta cyc A  A.B.C   A.B.C  π a 6p có b t ñ ng th c ∑ ≥ (vi). cyc A π -Áp d ng b t ñ ng th c Cauchy-Schwarz , ta có : 2 A A2 ( A + B + C ) π2 ∑ a cyc aA Aa + Bb + Cc Aa + Bb + Cc cyc =∑ ≥ = (vii), mà ta ñã tìm ñư c 2π p − 8 ( R + r ) < Aa + Bb + Cc < 2π p − 2π ( R + r ) (bài t p a/ ph n trư c) nên A π2 ∑ a 2π ( p − R − r ) cyc > (viii) (ch ñúng v i tam giác nh n). A B C -Áp d ng b t ñ ng th c AM-GM cho 3 s ( p − a) , ( p − b ) , ( p − c ) ta ñư c: a b c A B C . . ABC S 2 ABC . . S.ABC . . ( p − a) + ( p − b) + ( p − c) ≥ 3 3 ( p − a)( p − b)( p − c) =33 =33 ⇒ a b c .. abc p 4S.R 4 p.R A 2 p∑ A S A.B.C A a π ∑ ( p − a ) a ≥ 3 3 p 4S.R (4)mà ∑ ( p − a ) a ≤ cyc ≤ 2 (theo iv) nên t (4) cyc cyc 3 A p∑ 3 3 4 A 4  3π  2 S A.B.C cyc a π 729S . A.B.C 729S. A.B.C ⇒ 33 ≤ ≤ ⇔ ≤ p ∑  ⇒ ≤p   p 4S .R 3 2 4R  cyc a  4R  2p  ⇔ 54S . A.B.C ≤ π 3 . p.R (ix). The Inequalities Trigonometry 88 Truòng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 4 M t s chuyên ñ bài vi t hay,thú v liên quan ñ n b t ñ ng th c và lư ng giác 2 2 2  x y   z x   y z  ● Xét t ng T =  .  b By a Ax   a Ax c Cz   c Cz b By   +  + + + +        Ta có: T ≥ 0 y+z 1 z+x 1 x+ y 1  1 1 1  ⇔ . 2 + . 2 + . 2 − 2 + + ≥ 0. x a A y b B z cC  ab AB bc BC ca CA  y + z bc z + x ca x + y ab  c a b  ⇔ . + . + . − 2 + + ≥0 x aA y bB z cC  AB BC CA  y + z bc z + x ca x + y ab  a b c  ⇔ . + . + . ≥ 2 + +  (5). x aA y bB z cC  BC CA AB  1 a b c  abc 3 6 p Áp d ng b t ñ ng th c AM-GM ta ñư c: + + ≥ 3  ≥ (6). BC CA AB  ABC  π y + z bc z + x ca x + y ab 6 p T (5) và (6) ta ñư c: . + . + . ≥ (7). x aA y bB z cC π Thay (x, y, z) trong (7) b ng (p-a, p-b, p-c) ta ñư c: bc ca ab 12 p + + ≥ (x) A( p − a) B ( p − b) C ( p − c) π b + c c + a a + b 12 p Thay (x, y, z) trong (7) b ng (bc, ca, ab) ta ñư c: + + ≥ (xi). A B C π 2x  π 3/ Chúng ta xét b t ñ ng th c sau: sinx ≥ v i ∀ x ∈ 0,  (ph n ch ng minh b t π  2 ñ ng th c này dành cho b n ñ c). a Theo ñ nh lí hàm s sin ta có sin A = và k t h p v i b t ñ ng th c trên ta ñư c 2R a 2A a 4R a 12 R ≥ ⇔ ≥ , t ñó ta d dàng suy ra ∑ > . 2R π A π cyc A π sin x π 2 - x 2 4/ B t ñ ng th c: ≥ 2 v i ∀ x ∈ (0,π ] (b t ñ ng th c này xem như bài x π + x2 t p dành cho b n ñ c). sin x 2 x2 2 x3 B t ñ ng th c trên tương ñương ≥ 1− 2 ⇔ sin x ≥ x − 2 (1). x π + x2 π + x2 3 3 Trong tam giác ta có: sin A + sin B + sin C ≤ (2) (b n ñ c t ch ng minh).T (1) 2 3 3  A3 B3 C3  và (2) ta thu ñư c ≥ ∑ sin A > A + B + C − 2  2 2 + 2 2 + 2 2  ⇒ 2 cyc π + A π + B π +C  3 3  A3 B3 C3  A3 B3 C3 π 3 3 > π − 2 2 2 + 2 2 + 2 2  ⇔ 2 2 + 2 2 + 2 2 > − . 2 π + A π + B π +C  π + A π + B π +C 2 4 The Inequalities Trigonometry 89 Truòng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 4 M t s chuyên ñ bài vi t hay,thú v liên quan ñ n b t ñ ng th c và lư ng giác sin A π 2 − A2 M t khác, áp d ng b t ñ ng th c cho 3 góc A, B, C ta thu ñư c > 2 , A π + A2 sin B π 2 − B 2 sin C π 2 − C 2 > 2 và > 2 , c ng các b t ñ ng th c ta ñư c: B π + B2 C π + C2 sin A sin B sin C π 2 − A2 π 2 − B2 π 2 − C 2 + + > 2 + + , t ñây áp d ng ñ nh lí hàm s sin A B C π + A2 π 2 + B2 π 2 + C 2 a b c a π 2 − A2 π 2 − B2 π 2 − C2 a π 2 − A2 sin A = ta có 2R + 2R + 2R > 2 2 + 2 2 + 2 2 hay ∑ > 2 R ∑ 2 . 2R A B C π + A π + B π +C cyc A π + A2 The Inequalities Trigonometry 90 Truòng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 4 M t s chuyên ñ bài vi t hay,thú v liên quan ñ n b t ñ ng th c và lư ng giác Th tr v c i ngu n c a môn lư ng giác Lê Qu c Hán ð i h c Sư ph m Vinh “Lư ng giác h c” có ngu n g c t Hình h c. Tuy nhiên ph n l n h c sinh khi h c môn Lư ng giác h c (gi i phương trình lư ng giác, hàm s lư ng giác …), l i th y nó như là m t b ph n c a môn ð i s h c, ho c như m t công c ñ gi i các bài toán hình h c (ph n tam giác lư ng) mà không th y m i liên h hai chi u gi a các b môn y. Trong bài vi t này, tôi hy v ng ph n nào có th cho các b n m t cách nhìn “m i” : dùng hình h c ñ gi i các bài toán lư ng giác. Trư c h t, ta l y m t k t qu quen thu c trong hình h c sơ c p : “N u G là tr ng tâm tam giác ABC và M là m t ñi m tùy ý trong m t ph ng ch a tam giác ñó thì” : 1 1 ( ) ( ) MG 2 = MA 2 + MB 2 + MC 2 − a 2 + b 2 + c 2 (ð nh lý Lép-nít) 3 9 N u M ≡ O là tâm ñư ng tròn ngo i ti p ∆ABC thì MA 2 + MB 2 + MB 2 = 3R 2 nên áp 4 d ng ñ nh lý hàm s sin, ta suy ra : OG 2 = R 2 − R 2 (sin 2 A + sin 2 B + sin 2 C ) 9 4 9  ⇒ OG 2 = R 2  − (sin 2 A + sin 2 B + sin 2 C ) (1) 9 4  T ñ ng th c (1) , suy ra : 9 sin 2 A + sin 2 B + sin 2 C ≤ (2) 4 D u ñ ng th c x y ra khi và ch khi G ≡ O , t c là khi và ch khi ∆ABC ñ u. Như v y, v i m t ki n th c hình h c l p 10 ta ñã phát hi n và ch ng minh ñư c b t ñ ng th c (2) . Ngoài ra, h th c (1) còn cho ta m t “ngu n g c hình h c” c a b t ñ ng th c (2) , ñi u mà ít ngư i nghĩ ñ n. B ng cách tương t , ta hãy tính kho ng cách gi a O và tr c tâm H c a ∆ABC . Xét trư ng h p ∆ABC có 3 góc nh n. G i E là giao ñi m c a AH v i ñư ng tròn ngo i ti p ∆ABC . Th thì : ℘H / (O ) = OH 2 − R 2 = HE. HA Do ñó : OH 2 = R 2 − AH . HE (*) v i: AF cos A cos A AH = = AB. = 2 R sin C = 2 R cos A sin C sin C sin C và HE = 2 HK = 2 BK cot C = 2 AB cos B cot C cos C = 2.2 R sin C cos B = 4 R cos B cos C sin C Thay vào (*) ta có : 1  OH 2 = 8R 2  − cos A cos B cos C  (3) 8  The Inequalities Trigonometry 91 Truòng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 4 M t s chuyên ñ bài vi t hay,thú v liên quan ñ n b t ñ ng th c và lư ng giác N u ∠BAC = 90 0 ch ng h n, thì (3) là hi n nhiên. Gi s ∆ABC có góc A tù. Khi ñó ℘H / (O ) = R 2 − OH 2 = HA . HE trong ñó AH = −2 R cos A nên ta cũng suy ra (3) . T công th c (3) , ta suy ra : 1 cos A cos B cos C ≤ (4 ) 8 (D u ñ ng th c x y ra khi và ch khi ∆ABC ñ u). Cũng như b t ñ ng th c (2) , b t ñ ng th c (4) ñã ñư c phát hi n và ch ng minh ch v i ki n th c l p 10 và có m t “ngu n g c hình h c” khá ñ p. C n nh r ng, “xưa nay” chưa nói ñ n vi c phát hi n, ch riêng vi c ch ng minh các b t ñ ng th c ñó, ngư i ta thư ng ph i dùng các công th c lư ng giác (chương trình lư ng giác l p 11) và ñ nh lý v d u tam th c b c hai. Có ñư c (1) và (3) , ta ti p t c ti n t i. Ta th s d ng “ñư ng th ng Ơle”. N u O, G, H là tâm ñư ng tròn ngo i ti p, tr ng tâm và tr c tâm ∆ABC thì O, G, H 1 1 th ng hàng và : OG = OH . T OG 2 = OH 2 . 3 9 T (1)(3) ta có : 9 1 4 ( ) − sin 2 A + sin 2 B + sin 2 C = (1 − 8 cos A cos B cos C ) 4 2 2 2 hay sin A + sin B + sin C = 2 + 2 cos A cos B cos C Thay sin 2 α b ng 1 − cos 2 α vào ñ ng th c cu i cùng, ta ñư c k t qu quen thu c : cos 2 A + cos 2 B + cos 2 C + 2 cos A cos B cos C = 1 (5) Chưa nói ñ n vi c phát hi n ra (5) , ch riêng vi c ch ng minh ñã làm “nh c óc” không bi t bao nhiêu b n tr m i làm quen v i lư ng giác. Qua m t vài ví d trên ñây, h n các b n ñã th y vai trò c a hình h c trong vi c phát hi n và ch ng minh các h th c “thu n túy lư ng giác”. M t khác, nó cũng nêu lên cho chúng ta m t câu h i : Ph i chăng các h th c lư ng giác trong m t tam giác khi nào cũng có m t “ngu n g c hình h c” làm b n ñư ng ? M i các b n gi i vài bài t p sau ñây ñ c ng c ni m tin c a mình.  A B C 1. Ch ng minh r ng, trong m t tam giác ta có d 2 = R 2 1 − 8 sin sin sin  trong ñó  2 2 2 d là kho ng cách gi a ñư ng tròn tâm ngo i ti p và n i ti p tam giác ñó. T ñó hãy suy ra b t ñ ng th c quen thu c tương ng. • 2. Cho ∆ABC . D ng trong m t ph ng ABC các ñi m O1 và O2 sao cho các tam giác O1 AB và O2 AC là nh ng tam giác cân ñ nh O1 ,O2 v i góc ñáy b ng 30 0 và sao cho O1 và C cùng m t n a m t ph ng b AB, O2 và B cùng m t n a m t ph ng b AC. a) Ch ng minh : 1 2 ( O1O2 = a 2 + b 2 + c 2 − 4 3S 6 ) b) Suy ra b t ñ ng th c tương ng : The Inequalities Trigonometry 92 Truòng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 4 M t s chuyên ñ bài vi t hay,thú v liên quan ñ n b t ñ ng th c và lư ng giác 2 2 2 sin A + sin B + sin C ≥ 2 3 sin A sin B sin C 3. Ch ng minh r ng n u ∆ABC có 3 góc nh n, thì : sin A + sin B + sin C Truòng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 4 M t s chuyên ñ bài vi t hay,thú v liên quan ñ n b t ñ ng th c và lư ng giác Phương pháp gi i m t d ng b t ñ ng th c lư ng giác trong tam giác Nguy n Lái GV THPT Lương Văn Chánh – Phú Yên Gi s f ( A, B, C ) là bi u th c ch a các hàm s lư ng giác c a các góc trong ∆ABC Gi s các góc A, B, C th a mãn hai ñi u ki n :  A+ B 2 A + B  1) f ( A) + f (B ) ≥ 2 f   ho c f ( A) f (B ) ≥ f   (1)  2   2  ñ ng th c x y ra khi và ch khi A = B  π  π C +  C +  π  3  ho c f (C ) f π  3  (2) 2) f (C ) + f   ≥ 2 f   ≥ f  2  3  2   3  2          π ñ ng th c x y ra khi và ch khi C = Khi c ng ho c nhân (1)(2) ta s có b t 3 ñ ng th c : π  π  f ( A) + f (B ) + f (C ) ≥ 3 f   ho c f ( A) f (B ) f (C ) ≥ f 3   3 3 ð ng th c x y ra khi và ch khi A = B = C . Tương t ta cũng có b t ñ ng th c v i chi u ngư c l i. ð minh h a cho phương pháp trên ta xét các bài toán sau ñây : Thí d 1. Ch ng minh r ng v i m i ∆ABC ta luôn có : 1 1 1 3 2 + + ≥ 1 + sin A 1 + sin B 1 + sin C 2+4 3 L i gi i. Ta có : 1 1 4 4 2 + ≥ ≥ ≥ 1 + sin A 1 + sin B 2 + sin A + sin B 2 + 2(sin A + sin B ) A+ B 1 + sin 2 1 1 2 ⇒ + ≥ (3) 1 + sin A 1 + sin B A+ B 1 + sin 2 1 1 2 Tương t ta có : + ≥ (4) 1 + sin C π π 1 + sin C+ 3 1 + sin 3 2 C ng theo v (3) và (4) ta có : The Inequalities Trigonometry 94 Truòng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 4 M t s chuyên ñ bài vi t hay,thú v liên quan ñ n b t ñ ng th c và lư ng giác       1 1 1 1  1 1  4 + + + ≥ 2 + ≥ 1 + sin A 1 + sin B 1 + sin C π  1 + sin A + B π  1 + sin π 1 + sin C+ 3  2 3  3  1 + sin   2  1 1 1 3 2 ⇒ + + ≥ 1 + sin A 1 + sin B 1 + sin C 2+4 3 ð ng th c x y ra khi và ch khi ∆ABC ñ u. Thí d 2. Ch ng minh r ng v i m i tam giác ABC ta luôn có : 3  1  1  1   2  1 + 1 + 1 +  ≥ 1 +     sin A  sin B  sin C   3 L i gi i. Ta có : 2  1  1  1 1 1 2  1  1 + 1 +  = 1+ + + ≥ 1+ +     sin A  sin B  sin A sin B sin A sin B sin A sin B  sin A sin B  2    1  2  2  2  2  2  1  = 1 +   = 1 +   ≥ 1 +  = 1 +   sin A sin B   cos( A − B ) − cos( A + B )   1 − cos( A + B )   sin A + B         2  2    1  1   1  ⇒ 1 +  1+  ≥ 1 +  (5)  sin A  sin B   sin A + B     2  2          1   1 + 1  ≥ 1 + 1  Tương t :  1+  (6)  sin C  sin π   π     C+   3   sin 3   2  Nhân theo v c a (5) và (6) ta có : 2   2  4          1  1  1  1   1   1 + 1   ≥ 1 + 1  1 + 1 + 1 + 1 +  ≥ 1 +   sin A  sin B  sin C  sin π   sin A + B   π   π       C+   sin   3  2   sin 3   3   2  The Inequalities Trigonometry 95 Truòng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 4 M t s chuyên ñ bài vi t hay,thú v liên quan ñ n b t ñ ng th c và lư ng giác 3  1  1  1   2  ⇒ 1 + 1 + 1 +  ≥ 1 +     sin A  sin B  sin C   3 ð ng th c x y ra khi và ch khi ∆ABC ñ u. Thí d 3. Ch ng minh r ng v i m i tam giác ABC ta có : A B C 3 sin 6 + sin 6 + sin 6 ≥ 2 2 2 64 L i gi i. Trư ng h p tam giác ABC tù ho c vuông.  π  π A− B C +  Gi s A = max{A, B, C} ≥ , lúc ñó cos > 0 và cos 3  > 0. 2 2  2      Ta có : 3 6A B  2 A B sin + sin 6  sin + sin 2  3 2 2 ≥ 2 2  = 1 1 − cos A + cos B  = 1 1 − cos A + B cos A − B      2  2  8 2  8 2 2      3 1 A+ B 6 A+ B A B A+ B ≥ 1 − cos  = sin ⇒ sin 6 + sin 6 ≥ 2 sin 6 (7 ) 8 2  4 2 2 4 π π C+ C Tương t ta có : sin 6 + sin 6 3 ≥ 2 sin 6 3 (8) 2 2 4 C ng theo v c a (7 ) và (8) ta ñư c : π π π A B C  A+ B C+  A+ B+C + sin 6 + sin 6 + sin 6 + sin 6 3 ≥ 2 sin 6 + sin 6 3  ≥ 4 sin 6 3 2 2 2 2  4 4  8     A B C π 3 ⇒ sin 6 + sin 6 + sin 6 ≥ 3 sin 6 = (9) 2 2 2 6 64 Trư ng h p tam giác ABC nh n, các b t ñ ng th c (7 ), (8), (9) luôn ñúng. Thí d 4. Ch ng minh r ng v i m i tam giác ABC ta luôn có : 3   (cos A + sin A)(cos B + sin B )(cos C + sin C ) ≤ 2 2  2 + 6   4  4   L i gi i. Ta có : (cos A + sin A)(cos B + sin B )(cos C + sin C ) = 2 2 cos A − π  cos B − π  cos C − π         4  4  4 nên b t ñ ng th c ñã cho tương ñương v i : The Inequalities Trigonometry 96
DMCA.com Protection Status Copyright by webtailieu.net